Complexation and Photoinduced Electron-transfer Reaction between Perfluoroalkyl lodides and $N, N, N^{\prime}, N^{\prime}$-Tetramethylphenylene-1,4-diamine, Anilines and Piperazines

Qing-Yun Chen,* Zhan-Ting Li and Cheng-Min Zhou
Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

Abstract

Treatment of tetrafluoro-1,2-diiodoethane 1a or dodecafluoro-1,6-diiodohexane 1b with $N, N, N^{\prime}, N^{\prime}-$ tetramethylphenylene-1,4-diamine 2 gave $1+1$ solid complexes $\mathbf{3 a}$ or $\mathbf{3 b}$ in high yields. Complex 3a decomposed to give tetrafluoroethylene, iodine and $\mathbf{2}$ when irradiated with UV or heated. Complex 3b was converted into 6 H -dodecafluorohexyl- $N, N, N^{\prime}, N^{\prime}$-tetramethylphenylene-1,4-diamine 4 when irradiated with UV. On treatment of $\mathbf{1 a}$ and $\mathbf{1 b}$ with piperazine $\mathbf{6 a}$ and N, N^{\prime}-dimethylpiperazine $\mathbf{6 b}$, $1+1$ solid complexes 7 were similarly obtained. However, heating or irradiating 7 gave no perfluoroalkylated products. Irradiating a mixture of 2 or anilines 13 and perfluoroalkyl iodides 10 in dimethylformamide also gave perfluoroalkylated products. The photoinduced electron transfer reaction involved radical cation 2^{+}as a reactive intermediate which was detected by EPR techniques.

In 1965, it was first reported that charge-transfer complexes are formed between perfluoroalkyl iodides and amines based on the phase change diagram of the solution. ${ }^{1}$ The complexation also resulted in the appearance in the IR and far-IR spectra of broad absorption at $c a .100 \mathrm{~cm}^{-1}$ characteristic of the nitrogen-iodine stretching mode and a marked upfield chemical shift for $\mathrm{CF}_{3} \mathrm{I}$ or $\mathrm{R}_{\mathrm{f}} \mathrm{CF}_{2} \mathrm{I}\left(\mathrm{R}_{\mathrm{f}}=\right.$ perfluoroalkyl) in ${ }^{19} \mathrm{~F}$ NMR spectra. ${ }^{2}$ In 1978, Gutman proposed that such complexation occurs between perfluoroalkyl iodides and a variety of Lewis bases. ${ }^{3}$ Our work has shown that the ${ }^{19}$ F NMR upfield chemical shifts for the $-\mathrm{CF}_{2} \mathrm{I}$ of perfluoroalkyl iodides resulted from the complexation of perfluoroalkyl iodides with various solvents in a linear relationship with the DN (donor number) values of the solvents. ${ }^{4}$ We have also reported that solid charge-transfer complexes are produced between tetrafluoro-1,2-diiodoethane or dodecafluoro-1,6-diiodohexane and morpholine, $N, N, N^{\prime}, N^{\prime}$ tetramethylethylenediamine or 1,4-dioxane. ${ }^{5}$

m.p. $103^{\circ} \mathrm{C}$

m.p. $106.5^{\circ} \mathrm{C}$

m.p. $50-51^{\circ} \mathrm{C}$

Recently, a number of reactions of perfluoroalkyl iodides acting as electron acceptors have been developed for the synthesis of fluorine-containing organic compounds of interest medicinally and biochemically. ${ }^{6}$ In connection with our study of the photoinduced electron-transfer (PET) reaction of $\mathrm{R}_{\mathrm{f}} \mathrm{I}$ and $\mathrm{CF}_{2} \mathrm{I}_{2}$ with heterocyclic compounds (e.g. pyrroles, indoles, imidazoles and aminopyridines) to give perfluoroalkylated products, ${ }^{7}$ here, we describe related work with $N, N, N^{\prime}, N^{\prime}$ -tetramethylphenylene-1,4-diamine, piperazines and anilines.

Results and Discussion

Tetrafluoro-1,2-diiodoethane 1a or dodecafluoro-1,6-diiodohexane 1b and $N, N, N^{\prime}, N^{\prime}$-tetramethylphenylene-1,4-diamine (TMDP) 2 when mixed in chloroform at room temperature
readily gave high yield of the solid products 3, elemental analyses of which indicated that they comprised equimolar proportions of 1 and 2 . The ${ }^{19} \mathrm{~F}$ NMR spectra showed that the chemical shifts of the $\mathrm{CF}_{2} \mathrm{I}$ signal in 3a and 3b had moved

m.p. $85-88^{\circ} \mathrm{C}$

3a

m.p. $65^{\circ} \mathrm{C}$ 3b
upfield (4.5 ppm for 3 a and 3.2 ppm for $\mathbf{3 b}$). When heated directly or irradiated with UV in acetonitrile or dimethylformamide (DMF), 3a decomposed to afford tetrafluoroethylene, iodine and 2 (Scheme 1). When heated, compound 3b began

$\mathbf{3 a} \longrightarrow \mathbf{2}+\mathrm{CF}_{2}=\mathrm{CF}_{2}+\mathrm{I}_{2}$
Scheme 1 Conditions: $h v$ for 3b and $85^{\circ} \mathrm{C}$ or $h v$ for 3a
to melt at $65^{\circ} \mathrm{C}$ and regenerate 1 b and 2 , none of the new compounds being produced; when irradiated with UV light in DMF or acetonitrile its temperature rose to $60^{\circ} \mathrm{C}$ and it gave a moderate yield of 6 H -perfluorohexylated product 4 and a small amount of the hydrogen-abstraction product 5 (Scheme 1). No

7a $R=H$ m.p. $85^{\circ} \mathrm{C}$
7b $R=M e$ m.p. $66^{\circ} \mathrm{C}$

7c $R=H$ m.p. $55^{\circ} \mathrm{C}$
7d $\mathrm{R}=\mathrm{Me} \mathrm{m} . \mathrm{p} .77^{\circ} \mathrm{C}$

Scheme 2 Reagents and conditions: $h v$, DMF or $\mathrm{MeCN}, 60^{\circ} \mathrm{C}, 6 \mathrm{~h}$
dodecafluoro-6-iodohexylated product was produced. Similarly, treatment of $\mathbf{1}$ with piperazine $\mathbf{6 a}$ or N, N^{\prime}-dimethylpiperazine 6b gave solid $1: 1$ complexes 7 in high yields.

Table 1 Results of the reaction between 2 and 10

Entry ${ }^{\text {a }}$	$10^{\text {b }}$	Time (h)	11	Yield (\%) ${ }^{\text {c }}$	$\mathrm{R}_{\mathrm{f}} \mathrm{H}(\%)^{\text {d }}$
1	10a	4	11a	65	12
2	10a (1:3)	4	11a	70	13
3	10b	5	11b	66	18
4^{e}	10b	8	11b	62	2
5	10c	4.5	11c	74	15
6^{e}	10c	7	11c	70	2
7	10d	6.5	11d	64	12

${ }^{a}$ Using DMF as solvent unless otherwise noted. ${ }^{b} \mathbf{2}: 10=1: 2$ unless otherwise noted. ${ }^{c}$ Isolated yields based on 2. ${ }^{d}$ Determined by ${ }^{19} \mathrm{~F}$ NMR. ${ }^{e}$ Using acetonitrile as the solvent.

Compounds $7 \mathbf{a}$ and $7 \mathbf{b}$ decomposed to produce tetrafluoroethylene, iodine and $\mathbf{6 a}$ or $\mathbf{6 b}$. When a solution of $\mathbf{7 d}$ in acetonitrile was irradiated with UV light, compound 5, N methylpiperazine 8 and compound 9 were generated in low yields after treatment with water (Scheme 3). Although

Scheme 3 Reagents and conditions: $h v, \mathrm{MeCN}, 5 \mathrm{~h} ; \mathrm{ii}, \mathrm{H}_{2} \mathrm{O}$
treatment of 2 with perfluoroalkyl iodides 10 in a similar manner gave no solid complexes, the corresponding perfluoroalkylated products 11 were generated in good yields when a mixture of 2 and 10 in DMF was irradiated (Scheme 4).

Scheme 4 Reagents and conditions: $h v, \mathrm{DMF}, \mathrm{K}_{2} \mathrm{CO}_{2}, 65^{\circ} \mathrm{C}, 4-8 \mathrm{~h}$
Potassium carbonate was added to neutralize the HI produced. Small amounts of compounds 12 were also generated but no diperfluoroalkylated products were detected. The results of the reactions are listed in Table 1.

When an excess of anilines 13 was allowed to react with 10 (ratio 3:1) in DMF under similar conditions, the reaction temperature rose to $80^{\circ} \mathrm{C}$ and mixtures of perfluoroalkylated products 14 in good yields with a small amount of compounds

Scheme 5 Reagents and conditions: $h v, \mathrm{DMF}, \mathrm{K}_{2} \mathrm{CO}_{3}, 80^{\circ} \mathrm{C}, 12-20 \mathrm{~h}$

12 were obtained (Scheme 5). Only ortho- and para-substituted products and no perfluoroalkylamino-substituted derivatives were produced. The reaction of p-nitroaniline 13 f afforded a very low yield, indicating that the presence of strong electronwithdrawing groups in the benzene ring of 13 was unprofitable to the reaction. The results of the reaction are listed in Table 2.
Aromatic amines are known as electron donors in photochemical reactions ${ }^{8,9}$ and perfluoroalkyl iodides are recognized as electron acceptors. ${ }^{6}$ As mentioned above, the upfield - $\mathrm{CF}_{2} \mathrm{I}$ ${ }^{19} \mathrm{~F}$ NMR signal shifts of 1a and $\mathbf{1 b}$ in 3a and 3b are an indication of charge-transfer between 1 and 2. In order to confirm the reaction mechanism, an electron paramagnetic resonance (EPR) spectroscopic study was carried out. Without irradiation, both complex 3a and complex 3b in DMF gave a signal with no hyperfine lines probably because of the strong polarity of DMF. In acetonitrile at room temperature, no EPR spectra of perfluoroalkyl radicals were observed even in the presence of 2-methyl-2-nitrosopropane. ${ }^{10}$ However, the signals of the radical cation TMPD ${ }^{+}$, similar to those reported by Lui et al. ${ }^{11}$ were seen for both 3a $(g=2.0031, a=$ $\left.7.08 \times 10^{-4} \mathrm{~T}\right)$ and $\mathbf{3 b}\left(g=2.0029, a=7.24 \times 10^{-4} \mathrm{~T}\right)$, seemingly indicating the existence of the radical anions $1 \mathbf{1}^{--}$ and $1 \mathbf{1 b}^{-}$, because the ${ }^{19} \mathrm{~F}$ NMR spectra showed that no reaction took place. Without UV irradiation, the solution of 2 and perfluoroalkyl iodides 10 in DMF or MeCN gave no EPR spectra. Under UV irradiation, the signals of 2^{+}were also seen (for the solution of $\mathbf{2}$ and $\mathbf{1 0 a}, g=2.0029, a=7.11 \times 10^{-4} \mathrm{~T}$). Therefore, we propose the mechanism shown in Scheme 6 for

the reaction between 2 and 1 or 10 . The radical anion, formed from electron-transfer between 2 and 10, underwent carboniodine bond cleavage to give the perfluoroalkyl radical $\mathrm{R}_{\mathrm{f}}{ }^{\text {. }}$ which might couple with $\mathbf{2}^{+}$forming the perfluoroalkylated product 11 or abstract hydrogen from the solvent affording $\mathrm{R}_{\mathrm{f}} \mathrm{H}$.

In the irradiation-induced decomposition of 3a, evolving tetrafluoroethylene, the radical anion $1 a^{-0}$ formed after electron transfer from 2 to 1a, preferentially underwent carbon-iodine bond cleavage. Similar results have been found for the reactions of $\mathrm{I}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{X}(\mathrm{X}=\mathrm{I}, \mathrm{Cl})$ and amines such as triethylamine, morpholine and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylene-1,4-diamine. ${ }^{12}$ While the thermal decomposition of 3a, evolving tetrafluoroethylene, might involve both single electron-transfer and halophilic mechanisms similar to that of the reaction of $\mathrm{I}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{X}$ ($\mathbf{X}=\mathrm{I}, \mathrm{Cl}$) with dialkyl malonate carbanions and other nucleophiles. ${ }^{12}$
In the reaction of $\mathbf{1 0}$ and 13 , addition of single electrontransfer scavengers, p-dinitrobenzene (DNB) and di-tert-

Table 2 Results of the reaction between 10 and 13

Table 2 continued

Entry		$13(13: 10)^{a}$	Time (h)	14(\%) ${ }^{\text {b }}$	Yield of 12 (\%) ${ }^{c}$
$15^{\text {c }}$		137	20		20

${ }^{a} \mathbf{1 0}: \mathbf{1 3}=1: 3$ unless otherwise noted. ${ }^{b}$ Isolated yields based on $\mathbf{1 0}$.
${ }^{c}$ Determined by ${ }^{19} \mathrm{~F}$ NMR except entry $6 .{ }^{d} 20 \mathrm{~mol} \%$ of p-DNB was added. ${ }^{e} 20 \mathrm{~mol} \%$ of $\mathrm{Bu}_{2}{ }_{2} \mathrm{NO}$ was added. ${ }^{f} 20 \mathrm{~mol} \%$ of HQ was added.
butylaminooxyl or free radical inhibitor, hydroquinone (HQ) to the reaction mixtures significantly suppressed the reaction (entries 8-10 in Table 2), an indication that this reaction might also proceed by a PET mechanism.
The formation of compounds 8 and 9 should be the result of hydrogen abstraction of radical $\mathrm{I}\left(\mathrm{CF}_{2}\right)_{6}^{*}$ produced in the reaction from the methyl or methylene group of $\mathbf{6 b}$.

Experimental

M.p.s are uncorrected. IR spectra were obtained on a Schimadzu-440 instrument in potassium bromide pellets for all solid samples and in films for all liquid samples. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL FX-90Q instrument or a Varian XL-200 instrument using tetramethylsilane or chloroform as an internal standard. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian EM- 360 instrument at 56.4 MHz using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as an external standard and chemical shifts in ppm were positive upfield. J-Values are given in Hz . Mass spectra were obtained on a Finnigan-4041 instrument. Silica gel ($50 \mu \mathrm{~m}$) was used for column chromatography.

Generation of Solid Complexes 3.-Under a nitrogen atmosphere, $1 \mathrm{a}(1.77 \mathrm{~g}, 5 \mathrm{mmol})$ and $2(0.82 \mathrm{~g}, 5 \mathrm{mmol})$ were added to chloroform $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was allowed to stand overnight at room temp., to give a precipitate which, after being filtered off and recrystallized from diethyl ether, gave $2.15 \mathrm{~g}(83 \%)$ of $3 \mathrm{a}(2.15 \mathrm{~g}, 83 \%)$. M.p. $85-88^{\circ} \mathrm{C}$ (decomposed to evolve $\mathrm{CF}_{2}=\mathrm{CF}_{2}$ quantitatively) (Found: $\mathrm{C}, 27.8 ; \mathrm{H}, 3.1 ; \mathrm{N}$, 5.4; F, 14.4; I, 48.7. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 27.82; H, 3.12; $\mathrm{N}, 5.41 ; \mathrm{F}, 14.67$; I, 48.99%); $v_{\text {max }} / \mathrm{cm}^{-1} 2860,1615,1510,1500$, $1470,1450,1295,1110,1065,930$ and $810 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.45$ $\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.60(4 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-23.8(\mathrm{~s}) ; m / z$ 354 (19 ${ }^{+}, 32$), 254 (37), $227\left(\mathrm{ICF}_{2} \mathrm{CF}_{2}{ }^{+}, 47\right.$), 208 (13), 177 $\left(\mathrm{ICF}_{2}{ }^{+}, 16\right), 164\left(\mathbf{2}^{+}, 100\right), 149(43), 127\left(\mathrm{I}^{+}, 24\right)$ and 100 $\left(\mathrm{CF}_{2} \mathrm{CF}_{2}{ }^{+}, 23\right.$).
Complex 3b. 81% Yield; m.p. $65^{\circ} \mathrm{C}$ (Found: C, 26.5; H, 1.2; N, 3.9; F, 31.6; I, 36.1. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 26.74; H, 2.23; N, 3.90; F, 31.75; I, 31.38\%); $v_{\text {max }} / \mathrm{cm}^{-1} 2960,1855,1515,1475$, $1300,1210,1160,1075,935,820$ and $785 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.50$ $\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.80(4 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-17.3$ ($4 \mathrm{~F}, \mathrm{~s}$), 35.7 ($4 \mathrm{~F}, \mathrm{~s}$) and $44.0(4 \mathrm{~F}, \mathrm{~s})$; $m / z 554\left(\mathbf{1 b}^{+}, 5\right.$), 427 $\left(\mathrm{M}^{+}-\mathrm{I}, 12\right), 227\left(\mathrm{ICF}_{2} \mathrm{CF}_{2}{ }^{+}, 8\right), 181(17), 177\left(\mathrm{ICF}_{2}{ }^{+}, 100\right)$, $131(66), 127\left(\mathrm{I}^{+}, 53\right), 100\left(\mathrm{CF}_{2} \mathrm{CF}_{2}{ }^{+}, 28\right)$ and $69(67)$.
Photolysis of 3b.-Under a nitrogen atmosphere, a solution of $3 \mathrm{~b}(3.60 \mathrm{~g}, 5 \mathrm{mmol})$ in DMF $\left(10 \mathrm{~cm}^{3}\right)$ was irradiated and stirred, in a Pyrex flask, connected to a solid- CO_{2} cooler, with a highpressure mercury lamp (450 W) at a distance of 10 cm for 6 h . The temperature rose to about $60^{\circ} \mathrm{C}$ as a result of the irradiation. ${ }^{19} \mathrm{~F}$ NMR spectroscopy indicated that 10% of $\mathrm{I}\left(\mathrm{CF}_{2}\right)_{6} \mathrm{H} 4$ was produced. The solution was then poured into water ($30 \mathrm{~cm}^{3}$) and extracted with dichloromethane (3×10 cm^{3}). The chloromethane phase was washed with water (3×5
cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was then subjected to column chromatography on silica gel using diethyl ether-light petroleum (1:3) as eluent, to give 2-(6H-perfluorohexyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethylphenylene-1,4-diamine 4 as an oil ($1.04 \mathrm{~g}, 45 \%$) (Found: C, 41.3; H, 3.3; N, 6.2; $\mathrm{F}, 48.8$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{~N}_{2}$: C, 41.38; $\mathrm{H}, 3.45 ; \mathrm{N}, 6.03 ; \mathrm{F}$, 49.14%); $v_{\max } / \mathrm{cm}^{-1} 2950,1615,1545,1500,1480,1445,1350$, $1240,1185,985$ and $895 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.43$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $6.20(1 \mathrm{H}, \mathrm{tt}, J 56,8)$ and $6.32-6.98(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 28.0(2 \mathrm{~F}, \mathrm{~s}), 43.3(2 \mathrm{~F}, \mathrm{~s}), 45.4(2 \mathrm{~F}, \mathrm{~s}), 46.3(2 \mathrm{~F}, \mathrm{~s})$, $53.4(2 \mathrm{~F}, \mathrm{~s})$ and $61.9(2 \mathrm{~F}, \mathrm{~d}, J 56) ; m / z 464\left(\mathrm{M}^{+}, 100\right), 449$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 20\right), 448\left(\mathrm{M}^{+}-\mathrm{CH}_{4}, 16\right)$ and $213\left[\mathrm{M}^{+}-\right.$ $\left.\left(\mathrm{CF}_{2}\right)_{5} \mathrm{H}, 14\right]$.

Generation of Solid Complexes 7.--Solid complexes 7 were produced in a procedure similar to that described for 3. 7a (in 85% yield); m.p. $85^{\circ} \mathrm{C}$ (decomp.) (Found: C, 16.2; H, 2.1; N, 6.7; F, 15.3; I, 57.4. Calc. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 16.36; H, 2.27; N, 6.36; F, 15.27; I, 57.73%); $v_{\text {max }} / \mathrm{cm}^{-1} 3250$ (NH), 2830, 1450 , 1365, 1315, 1100, 1060, 940 and 825 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.65(8 \mathrm{H}, \mathrm{s}$, CH_{2}) and $3.10(2 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-20.0(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 354\left(1 \mathrm{a}^{+}\right.$, 51), 254 (70), $227\left(\mathrm{ICF}_{2} \mathrm{CF}_{2}{ }^{+}, 100\right), 208(21), 177\left(\mathrm{ICF}_{2}{ }^{+}, 33\right)$ and $100\left(\mathrm{CF}_{2} \mathrm{CF}_{2}{ }^{+}, 40\right)$.

Complex 7c. 75% Yield; m.p. $55^{\circ} \mathrm{C}$ (Found: C, $18.5 ; \mathrm{H}, 1.3 ; \mathrm{N}$, 4.2; F, 35.6; I, 39.4. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 18.75; H, 1.56; N, 4.36; F, 35.63 ; I, 39.69%); $v_{\text {max }} / \mathrm{cm}^{-1} 3300$ (NH), 2850, $1445,1380,1365,1320,1180,1065,990,885$ and 760 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.64\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $3.05(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-15.5(4 \mathrm{~F}, \mathrm{~s}), 35.6(4 \mathrm{~F}$, s) and $43.5(4 \mathrm{~F}, \mathrm{~s}) ; m / z$ 554 (1b ${ }^{+}, 17$), 427 ($\mathbf{1 b}^{+}-\mathrm{I}, 100$), 281 (18), 254 (8), 227 $\left(\mathrm{ICF}_{2} \mathrm{CF}_{2}{ }^{+}, 15\right), 177\left(\mathrm{ICF}_{2}{ }^{+}, 98\right), 181(17), 131$ (61), 100 (25) and 69 (53).

Complex 7b. 79% Yield; m.p. (decomp.) $66^{\circ} \mathrm{C}$ (Found: C, 20.8; $\mathrm{H}, 2.7$; $\mathrm{N}, 6.2$; $\mathrm{F}, 16.1$; I, 54.0. Calc. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 20.51; H, 2.99; N, 5.98; F, 16.24; I, 54.27\%); $v_{\max } / \mathrm{cm}^{-1} 2850,1445$, $1350,1290,1140,985,935$ and $880 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.24(6 \mathrm{H}, \mathrm{s}$, CH_{3}) and $2.66\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-20.1(4 \mathrm{~F}, \mathrm{~s}) ; m / z$ $354\left(1 \mathrm{a}^{+}, 677\right), 227\left(\mathrm{ICF}_{2} \mathrm{CF}_{2}{ }^{+}, 76\right), 177\left(\mathrm{ICF}_{2}{ }^{+}, 100\right), 127\left(\mathrm{I}^{+}\right.$, 24) and $100\left(\mathrm{CF}_{2} \mathrm{CF}_{2}{ }^{+}, 10\right)$.

Complex 7d. 71% Yield; m.p. $77^{\circ} \mathrm{C}$ (Found: C, 21.2; H, 1.7; N, 3.9; F, 34.2; I, 37.8. Calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 21.56; $\mathrm{H}, 2.10$; $\mathrm{N}, 4.20 ; \mathrm{F}, 34.13 ; \mathrm{I}, 38.08 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 2950,2850,1450,1360$, 1250, 1140, 980, 940 and $890 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $2.64\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-16.0(4 \mathrm{~F}, \mathrm{~s}), 35.6(4 \mathrm{~F}, \mathrm{~s})$ and $44.0(4 \mathrm{~F}, \mathrm{~s})$; $m / z 554\left(\mathbf{1 b}^{+}, 15\right), 427\left(\mathbf{1 b}^{+}-\mathrm{I}, 60\right), 227$ $\left(\mathrm{ICF}_{2} \mathrm{CF}_{2}{ }^{+}, 11\right), 117\left(\mathrm{ICF}_{2}{ }^{+}, 58\right), 131(41), 127\left(\mathrm{I}^{+}, 33\right), 115$ $\left(11 \mathrm{~b}^{+}+1,100\right), 100\left(\mathrm{CF}_{2} \mathrm{CF}_{2}{ }^{+}, 19\right)$ and $69(28)$.

Photolysis of 7d.-Under a nitrogen atmosphere, a solution of $7 \mathrm{~d}(1.54 \mathrm{~g}, 2 \mathrm{mmol})$ in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ was irradiated for $5 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR spectroscopy indicated that 10% of $\mathrm{I}\left(\mathrm{CF}_{2}\right)_{6} \mathrm{H} 5$ had been produced. After work-up as described above, $8(0.01 \mathrm{~g}, 5 \%)$ and $9(0.013 \mathrm{~g}, 5 \%)$ were obtained. 8: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.58-2.70\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $3.15(1 \mathrm{H}, \mathrm{s}$, NH); $m / z 101\left(\mathrm{M}^{+}+1,100\right)$ and $84\left(\mathrm{M}^{+}-\mathrm{CH}_{4}, 48\right) .9$ oil (Found: C, 55.0; $\mathrm{H}, 10.7$; N, 21.7. Calc. for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, $55.34 ; \mathrm{H}, 10.86 ; \mathrm{N}, 21.52 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.22$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $2.63\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.04(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.82(2 \mathrm{H}$, d, $J 2.5, \mathrm{CH}_{2} \mathrm{CO}$) and $9.80(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{CHO}) ; m / z 130\left(\mathrm{M}^{+}+\right.$ $1,20)$ and $43\left(\mathrm{CH}_{3} \mathrm{~N}=\mathrm{CH}_{2}{ }^{-+}\right)$.

Photoinduced Reaction of $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Tetramethylphenylene-1,4-diamine $\mathbf{2}$ and Perfluoroalkyl Iodides 10.-Typical procedure. Under a nitrogen atmosphere, a solution of $2(0.82 \mathrm{~g}, 5 \mathrm{mmol})$, $10 \mathrm{~b}(4.65 \mathrm{~g}, 10 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.70 \mathrm{~g}, 5 \mathrm{mmol})$ in DMF ($10 \mathrm{~cm}^{3}$) was irradiated for $4 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR spectroscopy indicated that about 18% of compound $\mathbf{1 2 b}$ was formed. Workup as described above gave 2-(6-chlorododecafluorohexyl)-N,-
$N, N^{\prime}, N^{\prime}$-tetramethylphenylene-1,4-diamine 11b as an oil (1.65 g , 66%) (Found: C, 38.0; H, 2.7; N, 3.55; F, 45.6. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClF}_{12} \mathrm{~N}_{2}$: C, 38.52; H, 3.01; N, 3.62; F, 45.70\%); $v_{\max } / \mathrm{cm}^{-1} 2945,2810,1615,1515,1435,1355,1200,1080,990$ and 770; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 6.36-7.02 $(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-8.2(2 \mathrm{~F}, \mathrm{~s}), 28.0(2 \mathrm{~F}, \mathrm{~s})$ and 44.5 ($4 \mathrm{~F}, \mathrm{~s}$); $m / z 501\left(\mathrm{M}^{+}+1,36\right)$, $500\left(\mathrm{M}^{+}, 17\right), 499\left(\mathrm{M}^{+}\right.$ $+1,100), 498\left(\mathrm{M}^{+}, 54\right), 483(9)$ and $213\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{5} \mathrm{Cl}\right.$, 19].

2-(4-Chlorooctafluorobutyl)- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethylphenyl-ene-1,4-diamine 11a. Oil (Found: C, 42.2; H, 3.6; N, 6.7; F, 38.3. Calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClF}_{8} \mathrm{~N}_{2}$: C, 42.16; H, 3.76; $\mathrm{N}, 7.03 ; \mathrm{F}, 38.14 \%$); $v_{\max } / \mathrm{cm}^{-1} 2950,1620,1500,1455,1360,1310,1190,1080,985$ and 785; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.29\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.51\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.46-7.13(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-8.6(2 \mathrm{~F}, \mathrm{~s}), 27.8(2 \mathrm{~F}, \mathrm{~s}), 44.5$ ($2 \mathrm{~F}, \mathrm{~s}$) and 45.7 ($2 \mathrm{~F}, \mathrm{~s}$); $m / z 400\left(\mathrm{M}^{+}, 26\right.$), $298\left(\mathrm{M}^{+}, 100\right), 383$ (23), 363 (8), $213\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{3} \mathrm{Cl}, 24\right]$ and 198 (12).

2-Perfluorohexyl- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethylphenylene-1,4-diamine 11c. Oil (Found: C, 39.8; H, 3.1; N, 5.8; F, 52.2. Calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{13} \mathrm{~N}_{2}$: C, 39.71; H, 3.37; N, 6.04; F, 52.33\%); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2950, 1615, 1545, 1495, 1410, 1395, 1200, 1145, 985 and 785; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 2.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 6.35-6.79 (3 H, m); $\delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}_{6}\right.\right.$]acetone) $4.9(3 \mathrm{~F}, \mathrm{~s}), 27.7(2 \mathrm{~F}, \mathrm{~s})$, $43.2(2 \mathrm{~F}, \mathrm{~s}), 45.1(2 \mathrm{~F}, \mathrm{~s}), 45.9(2 \mathrm{~F}, \mathrm{~s})$ and $49.6(2 \mathrm{~F}, \mathrm{~s}) ; m / z 482$ $\left(\mathrm{M}^{+}, 100\right), 467\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 15\right), 466(13), 213\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right.$, 10), 198 (15) and 69 (12).

2-Perfluorooctyl- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethylphenylene-1,4-diamine 11d. Oil(Found: C, $36.85 ; \mathrm{H}, 2.5 ; \mathrm{N}, 4.9 ; \mathrm{F}, 56.0$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{17} \mathrm{~N}_{2}$: C, 37.11; H, 2.58; N, 4.98; F, 55.50%); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2965, 1620, 1595, 1545, 1450, 1400, 1345, 1200, 985 and 780; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 2.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 6.50-6.94 (3 H, m); $\delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) $5.1(3 \mathrm{~F}, \mathrm{~s}), 27.8(2 \mathrm{~F}, \mathrm{~s})$, $43.3(2 \mathrm{~F}, \mathrm{~s}), 45.3(8 \mathrm{~F}, \mathrm{~s})$ and $49.8(2 \mathrm{~F}, \mathrm{~s}) ; m / z 582\left(\mathrm{M}^{+}, 100\right), 567$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 6\right), 213\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{~F}_{15}, 6\right)$ and 69 (14).

Photoinduced Reaction of Perfluoroalkyl Iodides 10 and Anilines 13.-Typical procedure. $10 \mathrm{a}(1.82 \mathrm{~g}, 5 \mathrm{mmol}), 13 \mathrm{~d}(1.82 \mathrm{~g}$, $15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and DMF ($10 \mathrm{~cm}^{3}$) were added to a Pyrex flask under a nitrogen atmosphere. The system was connected to a solid- CO_{2} cooler and then exposed, whilst being stirred, to a high-pressure mercury lamp (450 W) at a distance of $c a .8 \mathrm{~cm}$ for 12 h . Distillation gave $12 \mathrm{a}(0.12 \mathrm{~g}, 10 \%)$. The residue was then poured into water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$). The organic phase was washed with water $\left(3 \times 5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was subjected to column chromatography on silica gel using light petroleum-diethyl ether (3:1) as eluent, to give 2-(4-chlorooctafluorobutyl)- N, N-dimethylaniline $14 \mathrm{~h}(0.98 \mathrm{~g}, 55 \%)$ and 4 -(4-chlorooctafluorobutyl)- N, N-dimethylaniline $14 \mathrm{i}(0.57 \mathrm{~g}, 32 \%)$. 14h: oil, $v_{\text {max }} / \mathrm{cm}^{-1} 2930,2810$, $1600,1580,1450,1310,1290,1075,960,830,775$ and 710 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $7.00(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ $-8.6(2 \mathrm{~F}, \mathrm{~s}), 28.0(2 \mathrm{~F}, \mathrm{~s}), 43.4(2 \mathrm{~F}, \mathrm{~s})$ and $43.8(2 \mathrm{~F}, \mathrm{~s}) ; m / z 357$ $\left(\mathrm{M}^{+}, 30\right), 355\left(\mathrm{M}^{+}, 80\right), 320(23), 171\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{3} \mathrm{Cl}+1\right.$, 100] and 170 (24). 14i: oil, $v_{\max } / \mathrm{cm}^{-1} 2860,1615,1530,1485$, 1375, 1180, 1090, 1000, 945 and 775; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) 2.46 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.50(2 \mathrm{H}, \mathrm{d}, J 9.0)$ and $6.96(2 \mathrm{H}, \mathrm{d}, J 9.0)$; $\delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $)-7.8(2 \mathrm{~F}, \mathrm{~s}), 32.5(2 \mathrm{~F}, \mathrm{~s}), 43.2(2 \mathrm{~F}, \mathrm{~s})$ and $44.6(2 \mathrm{~F}, \mathrm{~s}) ; m / z 358\left(\mathrm{M}^{+}+1,10\right), 357\left(\mathrm{M}^{+}, 27\right), 356\left(\mathrm{M}^{+}+1\right.$, 36), $355\left(\mathrm{M}^{+}, 93\right), 320(32), 171(10)$ and $170\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{3} \mathrm{Cl}\right.$, 100].
2-(6-Chlorododecafluorohexyl)aniline 14a and 4-(6-chlorododecafluorohexyl)aniline 14b. 14a: oil, $v_{\max } / \mathrm{cm}^{-1} 3355,3300$ $\left(\mathrm{NH}_{2}\right), 1635,1590,1465,1330,1200,1045,980$ and 765 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.35-7.40(4 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-7.8(2 \mathrm{~F}, \mathrm{~s}), 30.1(2 \mathrm{~F}, \mathrm{~s}), 44.0(2 \mathrm{~F}, \mathrm{~s})$ and 44.8 $(2 \mathrm{~F}, \mathrm{~s}) ; m / z 430\left(\mathrm{M}^{+}+1,21\right), 429\left(\mathrm{M}^{+}, 13\right), 428\left(\mathrm{M}^{+}+1,54\right)$, $427\left(\mathrm{M}^{+}, 30\right), 308(14), 142\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{5} \mathrm{Cl}, 100\right]$. 14b: oil,
$v_{\text {max }} / \mathrm{cm}^{-1} 3350,3255\left(\mathrm{NH}_{2}\right), 1625,1520,1205,1065,960$ and $760 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.50(2 \mathrm{H}, \mathrm{d}, J 8.5)$ and 7.25 ($2 \mathrm{H}, \mathrm{d}, J 8.5$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-9.8(2 \mathrm{~F}, \mathrm{~s}), 31.2(2 \mathrm{~F}, \mathrm{~s}), 43.9(2 \mathrm{~F}$, s) and $44.9(2 \mathrm{~F}, \mathrm{~s}) ; m / z 430\left(\mathrm{M}^{+}+1,23\right), 429\left(\mathrm{M}^{+}, 16\right), 428$ $\left(\mathrm{M}^{+}+1,65\right), 427\left(\mathrm{M}^{+}, 44\right), 308(21), 142$ (66) and 93 $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}{ }^{+}+1,100\right)$.

4-Chloro-2-(6-chlorododecafluorohexyl) chloroaniline 14c. Oil, $v_{\max } / \mathrm{cm}^{-1} 3450,3400\left(\mathrm{NH}_{2}\right), 1650,1505,1200$ and 980 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.30-7.50(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-9.8(2 \mathrm{~F}, \mathrm{~s}), 30.9(2 \mathrm{~F}, \mathrm{~s}), 41.08(2 \mathrm{~F}, \mathrm{~s})$ and 43.1 ($2 \mathrm{~F}, \mathrm{~s}$); $m / z 465\left(\mathrm{M}^{+}+1,12\right), 464\left(\mathrm{M}^{+}, 4\right), 463\left(\mathrm{M}^{+}+1,34\right)$, $462\left(\mathrm{M}^{+}, 10\right), 443(11), 178\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{5} \mathrm{Cl}, 46\right]$ and 176 $\left[\mathrm{M}^{+}-\left(\mathrm{CF}_{2}\right)_{5} \mathrm{Cl}, 100\right]$.

2-(4-Chlorooctafluorobutyl)-N-methylaniline 14d and 4-(4-chlorooctafluorobutyl)-N-methylaniline 14e. 14d: oil (Found: C, 38.7; H, 2.4; N, 4.0; F, 44.1. Calc. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClF}_{8} \mathrm{~N}: \mathrm{C}, 38.67 ; \mathrm{H}$, 2.36; N, 4.10; F, 44.49\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3340(\mathrm{NH}), 2955,1505$, 1195, 1040 and $940 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.52(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH})$ and $6.80-7.62(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-7.4(2 \mathrm{~F}, \mathrm{~s}), 30.1$ ($2 \mathrm{~F}, \mathrm{~s}$), $42.0(2 \mathrm{~F}, \mathrm{~s})$ and $43.2(2 \mathrm{~F}, \mathrm{~s})$; $m / z 344\left(\mathrm{M}^{+}+1,40\right), 343$ ($\mathrm{M}^{+}, 10$), $342\left(\mathrm{M}^{+}+1,100\right), 341\left(\mathrm{M}^{+}, 28\right), 306(19), 286(9)$, 156 (44) and 136 (70). 14e: oil (Found: C, 38.5; H, 2.1; N, 4.2; F, 44.6. Calc. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClF}_{8} \mathrm{~N}: \mathrm{C}, 38.67 ; \mathrm{H}, 2.36 ; \mathrm{N}, 4.10 ; \mathrm{F}$, 44.49%); $v_{\text {max }} / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 2940,1500,1205$ and 945 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.87(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.80(2 \mathrm{H}, \mathrm{d}, J$ $9.0)$ and $7.12(2 \mathrm{H}, \mathrm{d}, J 9.0) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-8.6(2 \mathrm{~F}, \mathrm{~s}),$, ($2 \mathrm{~F}, \mathrm{~s}$), $43.0(2 \mathrm{~F}, \mathrm{~s})$ and 44.6 ($2 \mathrm{~F}, \mathrm{~s}$); m/z $343\left(\mathrm{M}^{+}, 7\right.$), 341 $\left(\mathrm{M}^{+}, 17\right), 306\left(\mathrm{M}^{+}-\mathrm{Cl}, 11\right), 157$ (11) and $156\left[\mathrm{M}^{+}-\right.$ $\left.\left(\mathrm{CF}_{2}\right)_{3} \mathrm{Cl}, 100\right]$.

2-(6-Chlorododecafluorohexyl)-N-methylaniline 14f and 4-(6-chlorododecafluorohexyl)-N-methylaniline 14g. 14f: oil (Found: C, 35.2; H, 1.6; N, 3.3; F, 51.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClF}_{12} \mathrm{~N}: \mathrm{C}, 35.35$; $\mathrm{H}, 1.83 ; \mathrm{N}, 3.17 ; \mathrm{F}, 51.63 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$ (NH), 1500,1435 , 1285,1210 and $980 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.02(1 \mathrm{H}, \mathrm{s}$, NH) and 6.85-7.61 ($4 \mathrm{H}, \mathrm{m}$); $\boldsymbol{\delta}_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-8.6(2 \mathrm{~F}, \mathrm{~s}), 39.6$ $(2 \mathrm{~F}, \mathrm{~s}), 44.0(2 \mathrm{~F}, \mathrm{~s})$ and $45.0(2 \mathrm{~F}, \mathrm{~s}) ; m / z 443\left(\mathrm{M}^{+}, 14\right), 441$ $\left(\mathrm{M}^{+}, 49\right), 406\left(\mathrm{M}^{+}-\mathrm{Cl}, 7\right), 157$ (32) and $156\left[\mathrm{M}^{+}-\right.$ $\left.\left(\mathrm{CF}_{2}\right)_{5} \mathrm{Cl}, 100\right]$. 14g: oil (Found: C, 35.4; H, 1.9; N, 3.1; F, 51.2. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClF}_{12} \mathrm{~N}: \mathrm{C}, 35.35 ; \mathrm{H}, 1.83$; N, 3.17; F, $51.63 \%) ; v_{\max } / \mathrm{cm}^{-1} 3380(\mathrm{NH}), 1505,1460,1265,1195$ and $885 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.25(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.69(2$ $\mathrm{H}, \mathrm{d}, J 9.0)$ and $7.24(2 \mathrm{H}, \mathrm{d}, J 9.0) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 8.1(2 \mathrm{~F}, \mathrm{~s})$, $31.6(2 \mathrm{~F}, \mathrm{~s}), 44.2(2 \mathrm{~F}, \mathrm{~s})$ and $45.2(2 \mathrm{~F}, \mathrm{~s}) ; m / z 444\left(\mathrm{M}^{+}+1\right.$, 10), $442\left(\mathrm{M}^{+}+1,32\right), 406\left(\mathrm{M}^{+}-\mathrm{Cl}, 7\right), 157$ (32) and 91 (100).

2-(6-Chlorododecafluorohexyl)-N,N-dimethylaniline 14j and 4-(6-chlorododecafluorohexyl)-N,N-dimethylaniline 14k. 14j: oil, $v_{\max } / \mathrm{cm}^{-1} 2940,2830,2760,1600,1495,1285,1160,1070,970$ and 770; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 2.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.95-7.10$ $(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $)-8.1(2 \mathrm{~F}, \mathrm{~s}), 27.9(2 \mathrm{~F}, \mathrm{~s})$ and 43.8 ($8 \mathrm{~F}, \mathrm{~s}$); $m / z 458\left(\mathrm{M}^{+}+1,10\right), 457\left(\mathrm{M}^{+}, 28\right), 456\left(\mathrm{M}^{+}+1,30\right)$, $455\left(\mathrm{M}^{+}, 80\right), 436(12), 420(19), 171(27), 170\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{~F}_{11}\right.$, 100) and 120 (16). 14k: oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1615,1585,1425,1320$, $1200,1140,1080$ and $970 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 2.15(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 6.90(2 \mathrm{H}, \mathrm{d}, J 8.5)$ and $7.21(2 \mathrm{H}, \mathrm{d}, J 8.5)$; $\delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $)-8.1(2 \mathrm{~F}, \mathrm{~s}), 31.4(2 \mathrm{~F}, \mathrm{~s})$ and $44.0(8 \mathrm{~F}, \mathrm{~s})$; $m / z 457\left(\mathrm{M}^{+}, 3\right), 455\left(\mathrm{M}^{+}, 6\right), 441(100), 406(13), 156(82) 136$ (86) and 85 (10).

2-Perfluorohexyl-N,N-dimethylaniline 14i and 4-perfluoro-hexyl-N,N-dimethylaniline 14m. 14i: oil (Found: C, 38.2; H, 2.3; $\mathrm{N}, 3.2 ; \mathrm{F}, 56.4$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{13} \mathrm{~N}: \mathrm{C}, 38.27 ; \mathrm{H}, 2.28 ; \mathrm{N}, 3.17$; F, 56.26%); $v_{\text {max }} / \mathrm{cm}^{-1} 2940,1615,1505,1400,1365,1205$, 1090, 965 and $780 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.65\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.52-$ $7.13(4 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 5.2(3 \mathrm{~F}, \mathrm{~s}), 27.6(2 \mathrm{~F}, \mathrm{~s}), 43.5(2 \mathrm{~F}, \mathrm{~s})$, $45.4(2 \mathrm{~F}, \mathrm{~s}), 46.0(2 \mathrm{~F}, \mathrm{~s})$ and $49.8(2 \mathrm{~F}, \mathrm{~s}) ; m / z 439\left(\mathrm{M}^{+}, 100\right), 438$ $\left(\mathrm{M}^{+}-\mathrm{H}, 17\right), 420(22), 170\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}, 21\right)$ and $120(76)$. 14m: oil (Found: C, 37.9; H, 2.3; N, 3.3; F, 55.8. Calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{13} \mathrm{~N}$: C, 38.27; H, 2.28; N, 3.17; F, 56.26\%); $v_{\text {max }} / \mathrm{cm}^{-1}$

2950, $1500,1455,1385,1205,945$ and $895 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.47(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 6.42(2 \mathrm{H}, \mathrm{d}, J 9.0)$ and $6.95(2 \mathrm{H}, \mathrm{d}, J 9.0) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ $4.9(3 \mathrm{~F}, \mathrm{~s}), 29.9(2 \mathrm{~F}, \mathrm{~s}), 45.0(6 \mathrm{~F}, \mathrm{~s})$ and $46.0(2 \mathrm{~F}, \mathrm{~s}) ; m / z 440$ $\left(\mathrm{M}^{+}+1,7\right), 439\left(\mathrm{M}^{+}, 46\right), 420\left(\mathrm{M}^{+}-\mathrm{F}, 11\right), 170\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{5} \mathrm{~F}_{11}, 100$) and 69 (13).
2-Perfluorooctyl-N,N-dimethylaniline 14n and 4-perfluoro-octyl-N,N-dimethylaniline 140. 14n: oil (Found: C, 35.6; H, 1.7; $\mathrm{N}, 2.6 ; \mathrm{F}, 60.4$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{17} \mathrm{~N}: \mathrm{C} .35 .62 ; \mathrm{H}, 1.86 ; \mathrm{N}, 2.59$; $\mathrm{F}, 59.93 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 2945,1605,1500,1195,935$ and 785 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $7.13-7.42(4 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 5.8(3 \mathrm{~F}, \mathrm{~s}), 28.4(2 \mathrm{~F}, \mathrm{~s}), 44.2(2 \mathrm{~F}, \mathrm{~s}), 45.8(8 \mathrm{~F}, \mathrm{~s})$ and $50.6(2 \mathrm{~F}, \mathrm{~s}) ; m / z 540\left(\mathrm{M}^{+}+1,25\right), 538\left(\mathrm{M}^{+}-\mathrm{H}, 28\right), 525$ (14), $170\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{~F}_{15}, 100\right)$ and 69 (24). 140: oil (Found: C, 35.5; H, 1.5; N, 2.8; F, 59.95. Calc. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{17} \mathrm{~N}: \mathrm{C}$, 35.62; H, 1.86; N, 2.59; F, 59.93\%); $v_{\max } / \mathrm{cm}^{-1} 2950,1615$, 1545, 1205 and $935 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.47\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.62(2 \mathrm{H}$, $\mathrm{d}, J 8.5)$ and $7.00(2 \mathrm{H}, \mathrm{d}, J 8.5) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 6.0(3 \mathrm{~F}, \mathrm{~s}), 31.0$ ($2 \mathrm{~F}, \mathrm{~s}$), $44.4(2 \mathrm{~F}, \mathrm{~s}), 46.0(8 \mathrm{~F}, \mathrm{~s})$ and $50.6(2 \mathrm{~F}, \mathrm{~s}) ; m / z 540$ $\left(\mathrm{M}^{+}+1,28\right), 539\left(\mathrm{M}^{+}, 100\right), 520(8), 470(13), 170(46), 156$ (17) and 69 (21).

3-(4-Chlorooctafluorobutyl)-4-amino-4'-chlorobiphenyl 14p. M.p. $58-60^{\circ} \mathrm{C}$ (Found: C, $43.2 ; \mathrm{H}, 2.0 ; \mathrm{N}, 3.2 ; \mathrm{Cl}, 16.2 ; \mathrm{F}, 34.7$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{~N}: \mathrm{C}, 43.10 ; \mathrm{H}, 1.69 ; \mathrm{N}, 3.01 ; \mathrm{Cl}, 16.18 ; \mathrm{F}$, 34.69%); $v_{\max } / \mathrm{cm}^{-1} 3350,3320(\mathrm{NH}), 1580,1390,1230,950$ and $785 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 4.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.78(1 \mathrm{H}, \mathrm{m})$ and $7.42-$ $7.48(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-8.9(2 \mathrm{~F}, \mathrm{~s}), 32.2(2 \mathrm{~F}, \mathrm{~s}), 43.1(2 \mathrm{~F}$, s) and $44.3(2 \mathrm{~F}, \mathrm{~s}) ; m / z 439\left(\mathrm{M}^{+}, 45\right), 437\left(\mathrm{M}^{+}, 100\right), 418(12)$, 254 (35), 252 (98), 202 (36) and 126 (13).

Acknowledgements

We thank Professor C.-X. Zhao for profitable discussion on the EPR spectra. This work was supported by the National Natural Science Foundation of China.

References

1 N. F. Cheetham and A. D. E. Pullin, J. Chem. Soc., Chem. Commun., 1965, 418.
2 (a) I. J. McNaught and A. D. E. Pullin, Aust. J. Chem., 1974, 27, 1009; (b) N. F. Cheetham, I. J. McNaught and A. D. E. Pullin, Aust. J. Chem., 1974, 27, 987; (c) A. Misher and A. D. E. Pullin, Aust. J. Chem., 1971, 24, 2493.
3 V. Gutman, in The Donor-Acceptor Approach to Molecular Interaction, Plenum Press, New York, 1978, p. 41.
4 Q.-Y. Chen, Y.-B. He and Z.-Y. Yang, Jouji Huacue, 1988, 451.
5 Q.-Y. Chen and Z.-M. Qiu, J. Fluorine Chem., 1987, 35, 79.
6 (a) R. Filler and Y. Kobayashi, Biomedical Aspects of Fluorine Chemistry, Kodonsha and Elsevier, New York, 1982; (b) R. E. Banks, Organofluorine Compounds and Their Applications, Ellis Horwood, Chichester, 1979; (c) J. T. Welch, Tetrahedron, 1987, 43, 3123; (d) P. Calas, P. Moreau and A. Commeyras, J. Chem. Soc., Chem. Commun., 1982, 433; (e) S. Sibille, E. d'Incan, L. Leport and J. Perichon, Tetrahedron Lett., 1986, 27, 3129; (f) W.-Y. Huang and B.-N. Huang, Acta Chim. Sinica, 1985, 43, 663; (g) W.-Y. Huang and W.-P. Ma, Chinese J. Chem., 1990, 175; (h) C.-M. Hu and F.-L. Qing, J. Fluorine Chem., 1990, 49, 275; (i) C.-M. Hu and Y.-L. Qiu, J. Org. Chem., 1992, 57, 3339; (j) Q.-Y. Chen and Z.-M. Qiu, J. Fluorine Chem., 1986, 31, 301; 1987, 35, 343; (k) Q.-Y. Chen and Z.-M. Qiu, J. Chem. Soc., Chem. Commun., 1987, 1240.

7 Q.-Y. Chen and Z.-T. Li, J. Chem. Soc., Perkin Trans. 1, 1992, 1443.

8 For a review, see (a) S. G. Cohen, A. Parola and G. H. Parsons, Jr., Chem. Rev., 1973, 73; (b) Y. N. Malkin and V. A. Kuzmin, Russ. Chem. Rev. (Engl. Transl), 1985, 1041; (c) N. J. Pienta, in Photoinduced Electron Transfer, eds. A. M. Fox and M. Chanon, Elsevier, Amsterdam, 1988, part C, p. 42.
9 For examples, see (a) P. Maslak and J. Kula, Tetrahedron Lett., 1990, 31, 4969; (b) V. Guichard, A. Bourkba, M.-F. Lautie and O. Poizat, Spectrochim. Acta, Part A, 1989, 45A, 187; (c) N. J. Turro, C.-H. Tung, I. R. Gould, G. W. Griffin, R. L. Smith and A. Manmade,
J. Photochem., 1984, 24, 265; (d) S. A. Alkaitis and M. Gratzel, J. Am. Chem. Soc., 1976, 98, 3549.
10 (a) W.-Y. Huang, L. Lu and Y.-F. Zhang, Chinese J. Chem., 1990, 348; (b) C. P. Audrieux, L. L. Gelis, M. Medebielle, J. Pinson and J.-M. Saveant, J. Am. Chem. Soc., 1990, 112, 35.

11 Y.-C. Liu, Z.-L. Liu, L.-M. Wu and P. Chen, Tetrahedron Lett., 1985, 26, 4201.

12 (a) Q.-Y. Chen and Z.-M. Qiu, J. Fluorine Chem., 1986, 31, 301; (b) Q.-Y. Chen and Z.-M. Qiu, Acta Chim. Sinica, 1987, 45, 354.

Paper 3/02717A
Received 13th May 1993 Accepted 16th June 1993

